Sunday, January 31, 2010
Theodore William Richards
Theodore William Richards was born in Germantown in Philadelphia, PA on January 31, 1868. He was the fifth child and third son of father William Trost Richards who was a famous landscape painter and mother Anna Matlack who was a poet. Because of the poor quality of schools in Philadelphia at the time and the family's frequent travels, Richards got his elementary education from his mother. The boy's early desire to become a painter like his father had faded by the time that he was thirteen.
At thirteen he received a large box containing materials and apparatus for 200 experiments "warranted to be safe and instructive". Richards recorded his progress, "Soon afterwards, ... I had nearly blown my head off with this outfit." Richards interest in chemistry was sparked and he obtained and read several basic chemistry textbooks to increase his knowledge and safety.
In 1883 he entered Haverford College in Pennsylvania. There he studied chemistry and astronomy graduating in 1885. From there he went to Harvard to study under Josiah Parsons Cooke, a family friend. There he finished his B.A. in chemistry in 1885 and his M.A. and Ph.D. in 1888, publishing a joint paper with professor Cooke on the atomic weights of hydrogen and oxygen and three other papers on his own.
After finishing his Ph.D. Richards spent a year at Gottengen, Germany where he worked under Paul Jannasch and Victor Meyer. Upon returning to Harvard Richards was appointed assistant in chemistry in 1889, instructor in chemistry in 1891, assistant professor in 1894 and professor in 1901, after passing up a professorship at the University of Gottengen. In 1895 he spent another year in Germany working with Wilhelm Ostwald and Walther Nernst. These two trips to Germany served as Richards introduction to physical chemistry. At the time there were no centers of physical chemistry research in the United States.
Half of Richards' research involved determining the atomic weights of the elements, starting with work on oxygen and copper in 1886. By 1912 he had accurately determined the atomic weight of thirty common elements. Richards also studied atomic and molecular volume and formulated the hypothesis of incompressible atoms, carrying out experiments on the compressibility of many elements and compounds using apparatus of his own invention. He was awarded the Nobel Prize for chemistry in 1914 for his work on atomic weights, but was unable to travel to Sweden to accept it due to the outbreak of World War I. He also received the Davy Medal from the Royal Society in 1910, Willard Gibbs Medal from the American Chemical society in 1912, and the Franklin Medal from the Franklin Institute in 1916.
Richards continued his teaching and active research up until his death on April 2, 1928.
References:
Conant, James Bryan, "Theodore William Richards"; in Biographical Memoirs; National Academies Press; 1974
Harrow, Benjamin, "Theodore William Richards"; in Eminent Chemists of Our Time; D. Van Nostrand Company; 1920
Theodore William Richards Nobel biography at Nobelprize.org
Sunday, January 24, 2010
Morris William Travers
Morris William Travers was born on January 24, 1872 in Kensington, London. He was the son of Dr. William Travers a surgeon and a pioneer of early aseptic techniques and Anne Pocock. Travers went to school at Ramsgate, Woking and Blundell's School. Showing an aptitude for science Travers went on to University College, London in 1889 and went to work for Sir William Ramsay. He graduated with a a B.S. in 1893.
After finishing his bachelors Travers went to Nancy, France where he planned to study organic chemistry, but finding both the subject and his advisor disagreeable he returned to University College where he returned to work for Ramsay. Ramsay was working studying rare gasses and had isolated Argon in 1894 and Helium in 1895. Ramsay realized that were still missing spaces on the periodic table left for undiscovered, non-reactive, noble gasses, so they built a copy of the machine invented by Carl von Linde which allowed them to obtain quantities of liquefied air.
In 1898 they obtained a large quantity of liquefied air which they subjected to fractionated distillation. From this they isolated Krypton in 1898. Krypton derives its name from the Greek word kryptos or hidden, as it is hidden in air. Later, examining a volume of argon, Ramsay and Travers identified another of the missing gasses, which they named neon after the Greek word for new, neo. On further examination of the liquefied air residues they found a third, heavier gas which they named xenon, after xeno the Greek word for strange. Because all of these gasses were unreactive the only way they could be identified was by placing them in a glass tube and electrifying them, each gas producing a unique spectrum. In the space of forty two days they had discovered three new elements. In 1898 Travers obtained his Ph.D. and in 1902 he published an account of their research.
In 1904 he accepted a position at University College Bristol and in 1906 he went to Bangalore, India to help found the Indian Institute of Science. In 1915 he returned to England to assist in the war effort working on the production of scientific glassware and munitions. He retired in 1937, but remained active as a consultant and writing a biography of Ramsay which was published in 1956. He died on August 15, 1961.
References:
Travers, Morris at chemistryexplained.com
Morris Travers wikipedia entry
Morris Travers at chem.ucl.ac.uk
The Elements: Names and Origins at h2g2 at bbc.co.uk
History of Chemistry: The Noble Gasses at h2g2 at bbc.co.uk
Sunday, January 17, 2010
Edward Frankland
In 1845, at the termination of his apprenticeship, Frankland traveled to London, where he was able to gain a position in the laboratory of Dr. Lyon Playfair, who had just been made the chemist to the Government Department of Woods and Forests. Although Dr. Playfair was often absent on official duties, Frankland made friends with his chief assistant, Mr. Ransom, who introduced him to the world of chemical analysis. So rapid was his progress that after six months he was offered the position as Playfair's lecture assistant.
Sunday, January 10, 2010
Norman George Heatley
Because it was war time and the threat of a German invasion was real, the group had to be prepared to destroy all its work, lest it fall into enemy hands. To ensure that all would not be lost Florey and his group seeded their lab coats with Penicillium spores, which were stable for years and could be used to regenerate their work.
Sunday, January 3, 2010
William Wilson Morgan
Dr. William Wilson Morgan was born on January 3, 1906 in Bethesda, Tennessee. Dr. Morgan, the son of Southern Methodist missionaries, moved frequently so he and his younger sister were initialy educated by their mother. At age 9 he went to school for the first time in Perry, Florida, then in Colorado Springs and he finished 8th grade in Poplar Bluff, Missouri in 1919. He finished his first two years of high school at Marvin Junior College in Fredricktown, Missouri and finished his last two at Central High School in Washington D.C.
In 1923 Dr. Morgan started his undergraduate study at Washington and Lee University in Lexington, Virginia finishing three years of classes before he joined the staff of Yerkes observatory after being recommended by Dr. Benjamin Wooten, Dr. Morgan's physics professor who had spent a summer at Yerkes, for a job taking daily spectroheliograms. Dr. Edwin Frost had been desperately searching for somebody to continue a series of spectroheliograms that had been taken daily for thirty years. At Yerkes, he was able to finish his bachelors by taking astronomy graduate courses and only set foot on the University of Chicago campus to sign up for the degree. He stayed at the observatory and finished his Ph.D. in 1931.
After finishing his doctorate he remained at Yerkes and began teaching a few years later, making full professor in 1947. He remained at Yerkes for 68 of his 88 years and was director from 1960 to 1963. From 1947 to 1952 he served as editor of the Astrophysical Journal. He was awarded the Bruce Medal by the Astronomical Society of the Pacific in 1958 and was awarded the Herschel Medal by the Royal Astronomical Society in 1983.
Dr. Morgan made numerous contributions to astronomy, including extending the Harvard system for classifying stellar spectra to include luminosity (named the MK system after Dr. Morgan and his colleague Dr. Philip Keenan), developing a system to determine the distance to remote stars more accurately, and demonstrating the existence of super giant galaxies. In 1951 he received a standing ovation from a meeting of the American Astronomical Society when he announced his discovery of two spiral arms of the Milky Way galaxy.
Because astronomers are unable to look at our home galaxy from the outside and at the time were limited to earthbound observations it was difficult for astronomers to determine the shape of the Milky Way. Dr. Morgan's observations allowed him to determine that the Milky Way was a spiral galaxy, similar in shape to the Andromeda nebula.
Dr. Morgan died on December 21, 1994.
References:Garrison, R. F.;"William Wilson Morgan (1906-1994)"; Publications of the Astronomical Society of the Pacific; (1995)107:507-512
Osterbrock, Donald E.;"William Wilson Morgan"; Biographical Memoir at National Academy Press
Wilford, John Noble; "William Wilson Morgan dies at 88; a leading U.S. astronomer"; New York Times; June 24, 1994
William Wilson Morgan's Bruce Medalist page at www.phys-astro.sonoma.edu